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Abstract

Thermally induced dynamic instability of laminated composite conical shells is investigated by means of a pertur-
bation method. The laminated composite conical shells are subjected to static and periodic thermal loads. The linear
instability approach is adopted in the present study. A set of initial membrane stresses due to the elevated temperature
field is assumed to exist just before the instability occurs. The formulation begins with three-dimensional equations of
motion in terms of incremental stresses perturbed from the state of neutral equilibrium. After proper nondimension-
alization, asymptotic expansion and successive integration, we obtain recursive sets of differential equations at various
levels. The method of multiple scales is used to eliminate the secular terms and make an asymptotic expansion feasible.
Using the method of differential quadrature and Bolotin’s method, and imposing the orthonormality and solvability
conditions on the present asymptotic formulation, we determine the boundary frequencies of dynamic instability re-
gions for various orders in a consistent and hierarchical manner. The principal instability regions of cross-ply conical
shells with simply supported—simply supported boundary conditions are studied to demonstrate the performance of the
present asymptotic theory. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Dynamic instability; Conical shells; Thermal loads; Perturbation; Asymptotic expansion; Differential quadrature method;
Three-dimensional analysis

1. Introduction

Research topics related to dynamic instability of elastic systems have received substantial attention
through the years (Bolotin, 1964). The subject deals with the dynamic behavior of elastic systems subjected
to external static and dynamic loads. In the analyses of these problems, the boundary frequencies of dy-
namic instability regions for a system of generalized Mathicu-Hill equations are determined. General
concepts and comprehensive investigations of various isotropic structural components can be found in the
literature (Beliaev, 1924; Bolotin, 1964; Koval, 1974).

In recent decades, composite materials were increasingly used in the industrial applications. Dynamic
instability of laminated composite plates and shells was therefore studied. Argento and Scott (1993a,b) and
Argento (1993) analyzed the dynamic instability of layered anisotropic circular cylindrical shells under
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periodic axial loads and combination of the periodic axial and torsional loads. The variations of instability
regions with the circumferential wave number and the magnitude of external loads were investigated. Bert
and Birman (1988) presented a detailed study on the dynamic instability of thick laminated cylindrical
shells. The effect of transverse deformation on the principal instability region was studied. Based on Love’s
classical theory, Ng et al. (1998) examined the effect of the magnitude of axial loads on the instability
regions. Using an extension of Donnell’s shell theory to a first-order shear deformation theory (FSDT), Ng
et al. (1999) estimated the effects of thickness-to-radius ratio on the instability regions. Comparisons of
instability regions generated using various classical shell theories (CST) (i.e., Donnell’s, Love’s and Fliigge’s
shell theories) were made by Ng and Lam (1999).

After making a literature survey, we found that most of the articles deal with dynamic instability of
laminated cylindrical shells under various external periodic mechanical loads. The analysis of thermal
dynamic instability has received less attention. Birman and Bert (1990) presented the dynamic instability
analysis of reinforced composite cylindrical shells in thermal fields. On the basis of a FSDT, an identical
study was presented by Ganapathi and Touratier (1998).

The aforementioned papers presented the two-dimensional (2D) results for the dynamic instability
analysis of laminates subjected to static and periodic thermomechanical loads. A detailed study for the
three-dimensional (3D) analysis of thermal dynamic instability is lacking. Hence, the present paper aims at
developing a 3D formulation for the dynamic instability analysis of laminated conical shells subjected to
static and periodic thermal loads by means of a perturbation method.

Asymptotic differential quadrature (DQ) solutions for the thermal dynamic instability analysis of
laminated circular conical shells are presented in this paper. It is an extension to the recent studies related to
asymptotic theories for free vibration (Wu and Wu, 2000) and for thermal buckling (Wu and Chiu, 2001)
problems. The linear instability approach is considered in the present formulation. A geometric small
perturbation parameter and a set of dimensionless field variables are defined. Through nondimensional-
ization, asymptotic expansion and successive integration, the asymptotic theory finally turns out recursive
sets of CST governing equations for various orders. The method of multiple scales (Nayfeh, 1993) is used to
eliminate the secular terms and make the asymptotic expansion feasible. Using Fourier series expansion in
the circumferential coordinate, the recursive sets of governing equations can be reduced to systems of
partial differential equations where the derivatives are with respect to the meridional coordinate and the
time variable. According to the DQ rule, we replace the resulting governing equations and the corre-
sponding boundary conditions for various orders as systems of generalized Mathieu-Hill equations. The
solution procedure suggested by Bolotin (1964) is used to determine the boundary frequencies of dynamic
instability regions at the leading-order level. Imposing of the orthonormality and solvability conditions for
higher-order problems, the higher-order modifications to boundary frequencies can be uniquely determined
in a hierarchical and consistent manner.

2. Basic three-dimensional equations

Consider a laminated composite conical shell as shown in Fig. 1. The material properties are considered
to be piecewise-constant functions of the thickness coordinate. A set of the conical coordinates (s, 0, {) is
located on the middle surface. R, and R, are the radii of the cone at the small and large edges, respectively. «
is semivertex angle of the cone, 2/ denotes the shell thickness, and L is the slant length of the cone.

According to the assumptions of the linear instability approach, a set of membrane state of stress exists
in the shell just before instability occurs (Leissa, 1995; Tauchert, 1987, 1991). The set of membrane stresses
is regarded as the initial stresses and is introduced into the variational equations (Bolotin, 1964). The in-
cremental stresses associated with the small incremental displacements perturbed from the state of neutral
equilibrium will be considered.
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Fig. 1. The geometry and coordinate system for a laminated conical shell.

Referring to the configuration of the initial membrane state of stress, the motion equations are given by
(Saada, 1974; Soedel, 1993)

1 t 2
RoGys + 8405 — 8,00 + Ty + CaTor + hoTsee — 0% (Rottss) s — (0 /o) [s.00 — Sputs — 25510.0 — S4Cottc)

- Tié} [21’!8,3‘0 - 2sau9,s] = phﬂus,n‘a (1)

284750 + hoTsos + o9 + 2¢4Tor + hoTor; — O-i(h(?uﬁ,s)m _(O-tg/hé))[zsotusﬁ + upgp — g + 2c,uz 0]
— o[ 2851455 + 2ug 0 + 2cuz 5] = phog (2)

t t 2
—C400 + SuT + hoTses + Toco + €200 + ooy — 0 (hgug) s —(04/ho) | — SaCatts — 2¢5110 + g0 — Couc]

— T;e[ — 2C,xu9,x + 21/[(,‘?9] = phau;n, (3)

where p is the mass density; &y = ss, + (¢4, 5, = sina and ¢, = cosa; g, gp, 0¢, Ty, Tor and 7 are the in-
cremental stresses; u,, uy and u; are the incremental displacements; the commas stand for differentiation
with respect to the suffix variables; ¢!, ¢}, and 1/, denote the initial membrane stresses due to a temperature
change AT.
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In the present study, the temperature change AT is considered a periodic function in time and a certain
distributed function in the thickness coordinate

AT = 0, AT p(0) + g AT (L) cos Qt, 4)

where o and oy are the static and dynamic parameters related to the critical value of the temperature field in
the static thermoelastic buckling problem (Wu and Chiu, 2001); Q is the angular frequency of the tem-
perature field. The time variable is represented as #, and the distributed temperature function ¢({) is
normalized as ffh H*()de = 1.

The corresponding relations between (c',0),1,) and AT for a monoclinic material are ¢’ = n AT,
oy = NpAT, 7y = nyAT and

C%O(] + S%)OQ

R i1 Cr2 C13 Cie
$ o S(%Otl + C%O(Z 5
My = |Ci2 € C3 Cz a ) ( )
3
Nso Cile €2 C36 Ceo

2cps0 (061 - 062)

where c¢; denote the stiffness coefficients; «;, o, and o3 are the coefficients of thermal expansion along
principal material axes; ¢y, s9 = (cos, sin)6.
The incremental stress—strain relations for a monoclinic material are given by (Saada, 1974)

O cn cnp c3 0 0 ci6 Es

] cp c» cn 0 0 cx% &g

oc\ _ €13 €3 C33 0 0 c3% & ()
Tor 0 0 0 Cq4 Cy4s 0 VHC ’

Ts¢ 0 0 0 C45 Cs5 0 Vs(

g0 cie cx ¢ 0 0 ces| | Vw0

where &, &, &, 75, Yor» V50 are the incremental strain components.

The kinematics relations between the incremental strains and incremental displacements are written as
(Saada, 1974)

& 0y 0 0

€9 Sa/ho 0o/ ho ¢y /hg y

&¢ _ 0 0 6; s

(=1 o 0 N U ¢ (7)
Yor 0 0 —(cufho) /g |\

Vso a()/h() as - (Szx/h()) 0

in which 0, = 9/0s, 0y = 0/00, 0, = 0/0(.

3. Nondimensionalization and asymptotic expansion

A set of dimensionless field variables is used in the present formulation and defined as follows:

x;=s/Re, x2=10, x3=C_/h, (8a—c)
uy =uy/Re, uy=up/Re, u3 =ug/R, (8d-f)
o1=0,/0, 02=09/Q, Ti2=7130/0, (8g-1)

)

T3 = ng/Q& To3z = Teg/Q& (Sjvk
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03 = 0y/ 0, (81)
AT = nAT/Q¢, (8m)
ﬁl = 173/177 ﬁz = 176/177 ﬁ6 = ;739/177 (811*1))

where ¢ = /1/R is a small parameter, usually much less than 1; R denotes a characteristic length of the shell;
n and Q are reference thermoelastic moduli; AT = T ¢ (x3) in which T = (o,ATy; + agAT,, cos Q1)n/Qe* and

b (x3) = ¢().
The dimensionless multiple time scales are introduced in the formulation and defined in the following
form

TkZSZkVQ/pOt/R (k=0,1,2,...), )

where p, is the reference mass density.

The increments of the displacements (uq, uy, u:) and transverse stresses (7, Tg;, ;) are regarded as the
primary field variables. After eliminating the in-surface stresses oy, oy and 7, from (1)—(7) we reformulate
the 3D equations of motion in the dimensionless form as

U3z = *82Llu - 82?33“3 + 84(Q/C33)637 (10)
u’3 = —Du3 + 82L2u + EZSGS + 84L36S5 (1 l)

0,3 — —L4ll — L5u3 — SZL(,O'S — 82L7(73 + az(Tlu + thl’;)AFf

+ a—2+282 ¢ +&*(2 e +a—2 +-|u (12)
P ot 01001y 01901, 07} ’

033 = Lgll + i63u3 — DTO'S — ’L'13S“/l" — 82i64’[13 — 82i650'3 + |:E34u3 + 82 <T3ll + Z33M3>:| Aﬂf’

0? , O 4 0> ?
I, * A0 - 13
+p2{61§+ ¢ 6‘50611_“? ( 610612+6r%>+ }u;, (13)
6,, = Lou + Lygus + ¢’Ly; 03, (14)
where
o i B
u T -
ll{ 1}7 Gs{ 13}7 Oy = 02 5 D= ~]3 ) S = ~]4 ~15 9 Ll: [131 132}7
s ™ I his Dy
T12
0 0 0 0 In I . Iy 0
L — S = S|, La= | o= ] = | Y,
>~ o lzz} ’ {126 127} N [151 152] ’ [153] ° [ 0 155]
L B B 1:71 1:72 1:73 éll
L7 = l~46:|, LS = [161 lsz]a L9 = lgl lgz 5 LIO = lg3 5 L11 = |Cxa |,
56 FF 7 =
loy oy I3 €36
[t ERGE o _
T, = _221 222:|7 T, = |:223:|’ T; = [t31 t32]7 7= X1S8q,
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pr = (p/po)(h/R)ye, P2 = (p/Po)Vo-
The detailed expressions of iij in the matrices L; (i = 1-11) and #; in T; (i = 1-3) can be found in an early
paper (Wu and Chiu, 2001).
Noting that (10)—(14) contain only even power terms of &, we expand the displacements and stresses as
f(x17x27x37‘507‘cl7 .. 78) :f<0>(x17x25x3,‘507‘5]) .. ) + 82f(1)(xl;x27x3;‘[07r17 .. )
+84f(2)(X17JC2,X3,’E(],’E1,...)+"', (15)
where [ = oy, u;.
After substituting (15) into (10)—(14) and collecting coefficients of equal powers of &, we obtain the
following sets of equations for various orders.

Order &
a2 — 0, (16)
u = -Du”, (17)
0%*u®
o3 = —Lau® — Ll + p; —, (18)
’ ot;
0
o33 = Lyu® + Igul — D60 — o5, /r + tul’ AT + Qu’ (19)
33 = Ls 63U3 o T13 S/ T T 134U3 %) 6‘53 )
6 = Lou® + Lyou”. (20)
Order &% (k=1,2,3,...):
uf) = —LuY — LY+ (Q/exs)al 7, (21)
u = —Dul + Lou* 4+ Se*D 4 Lyg2), (22)
6;({(3) = —L4u(k) — Lsugk) — L(,O'lskil) — L7O'(3k71) + |:T1ll<k71) + Tzugkil)i| AT
r92a®) Q2ul—1) a2 a2
2 o, 23
T | 073 * 07901 ( 01001y + ot? ) + ] (23)

U(%k3) = Lgu(k) + l~63ugk) — DTd'g,k) - ‘C(lI;)Sa/I" — l~64T(ll§_1> - i650'gk_l) + 234u(3k)Ai" + |:T3ll(k71) + 2331/{(3/{_1) AT

[ k) (k—1 k-2 k-2
+p azu(3 ) 62u3 ) ) 62u§ ) L azug ) . (24)
2| or? 010014 010074 or? ’
L Y% 1
O'Enk) = Lgll(k) =+ Llougk> + L]]Jgk71)7 (25)

where displacement and stress components /) = 0 for j < 0.
The associated dimensionless boundary conditions for various orders are described as follows: on the
inner and outer surfaces the following traction conditions must be satisfied:

[TY;),‘E%), o—g“] =1[0,0,0] (k=0,1,2,...) onx3 = =£1. (26)
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Along the edges at x; = 0 and L/v/Rh, one member of each pair of the following quantities must be sat-
isfied:

mol” +mt) =p, or W’ =, (27a)

mtyy +may) =Py, or uy =1, (27b)

moly +mty) =p;, or W) =7 (27¢)
and

mal + ) =0, or W’ =0 (k=1,2,3,..), (28a)

mt® 4ol =0, or W =0 (k=1,2,3,..), (28b)

nlr(@ + nzrgg) =0, or u_gk) =0 (k=1,2,3,...), (28¢)

where p; = p,/0, P, = Py/ Q. Py = p;/Q¢; ty = U/ VR, Uy =1y and u3 = u;/R. (p,, Py, p;) and (&, o, ;)
are prescribed traction and displacement components, respectively.

4. Asymptotic formulation

4.1. The leading-order level

Integrating the asymptotic equations (16)—(19) and applying the lateral boundary conditions (26) at the
inner surfaces (x; = —1), we obtain

) = ul(x1,x2), (29)
u® = (x;,x7) — x3Dusd, (30)
0 = 0 0 0 o2 " 0 0
o) = _/1 [Ls(u’ — nDul) + Lsul]| dy +@ [/1 py(u’ — 11Du3)d11}, (31)
— O —

x3 5 x3
0(30) = [1 [Ls (w’ — nDuf) + lg3u3]dn + /4 {(x3 = n)D" [Ly(u’ — nDu3) + Lsu3] } dn + (s./7)

X3 - 3o, - X3 a2u0 62
x /_1 {(x3 —7) {le(uo — nDul) + l43ug}}dn - /_1 (t34u(3)AT> dn + (/_1 pzdn> ?(2)3_673

X3 62 X3
| [t vy an] - 5| (ot el @
—1 0 -1
where u§(x1,x2), 0’ = { u0(x;,x2)  ud(x1,x2) }T represent the middle surface displacements; Li» = [, o, |
in which the detailed expressions of /4; and /4, can also be found in an early paper (Wu and Chiu, 2001).
Imposing the lateral boundary conditions (26) at the outer surface (x3 = 1) on (31) and (32) and sim-
plifying the resulting equations, we can rewrite (31) and (32) as

Ko Koo 4 Ko — 1 Oy g T 33
niy + Kpuy + Kjzuy = B (“3,1) 032" (33)
0 0
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o 0%

Koy + Kopu) + Kosuy = (Iy1/7) o2 (3,) — Lo—=, (34)
5 ot
0 0 3,0 0 ™, 0 0 62“(3) 0 T. 0 0
K3]u1 + K321/l2 + (K33 + KNT)L{3 = 112—6‘[,'2 (D Du3 + le/lll/l") — [20 —6’52 — 111 _6’52 (D u + S“ul/l’), (35)
0 0 0

where K;; are the differential operators. For brevity, the operators for cross-ply laminated shells are given by

K= —(211611 +;166622/r2 +211Sa61/7’ —,lezsi/rz),
K =— {(212 +266)812/7 — (4 +1:166)So<62/72}a

Kis = Bydu + (Biy + Bes + Beg)122/1* + B1is,011/r — (Biz + By + Beg + Beg)s,0 /1
— (lec“\/R/h/r+§22s§/r2)61 + Ansycy/R/H /P,

Ky =~ {(212 +266)612/7+ (A +;166)Sa62/72]7
Ky = _(266611 —|-;122622/1’2 + Z()ésaal/r —;166Si/7’2),

Ky = (Elz + §66 + 2;’66)5112/F "|-§226222/’”3 + (B + Bes + §66 - 2§66)Sa612/r2
— |:;4226‘a\/R/h/I’2 —|— (Eéé +E(>6 — 2§66)Si/r3:| 62,
K3 = _Ellalll - (§12 + Bes + §66)6122/r2 - (En +1§11)Sa611/" — Bys,0n /17
+ (lec“\/R/h/r—|—§22si/r2)61 —|—;122saca\/R/h/r2 —Ezzsi/7’3 — E]]ﬂ]é]] +E22‘1Si/l"2 —1_366‘]622/1”2,

K3 = —(Bi2 + Bes + Bos)0112/r — BnOon /1 + (B + Bes — Be)s,012 /1"
+ (Azzca\/R/h/rz — Ezzsi/l’j)az + (Ezz +E66)71 Saaz/l"z,

K33 = 1311@1111 + (2512 + Dgs + 2Dgs + 566)61122/1’2 + Dyl /17 + (511 + Bll)saallll/r
— (22566 + 566 +566 + 2512)5‘0{6122/73 — (2?1261\/]3/}[/1’ +522S§/I”2)611 — [2@2201\/]3/]’!/1’3
- (2512 + 2Dy, + Dgs + Des + Zﬁﬁa)si/’ﬂ On + Ezzszal/f’3 + An(cyy/ R/h/r)2 - EZZSicac\/ R/h/r
+ 5117161111 -FEﬁé,lalzz/’2 — 52(D2 + Des )1 622/’”3 - S§522,lal/7’2 + $4Co/ R/hﬁzz,l/rz,

Ky = 91011 + (72/17) 02 + (7,5,/7)01,

| | | |
Iy :/ prdxs, I Z/ pix3dxs, I Z/ prx;dxs, Iy :/ pydxs,
-1 -1 -1 -1

Gy 4] = [ 0uln 1 e
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&)

[

1
i B Eij]:/lQijx3[V0 L (1/yy)]dxs,

)

l ~
[ ij ﬁij Ezﬁ/] = _lQijx§[V9 1 (1/7,)]dxs,
|:’)A)z:/' 571‘_,‘ 71;,} = /4 ﬁij%[y() 1 (1/7,)]dxs.

4.2. The higher-order levels

Integrating (21)-(24), we obtain

ugk) =k (x1,X2) + Py (31,32, x3), 0

u® =t (x1,x0) — x3Dul + ¢y (x1,22,%3), 7
x3

o) = —/ [La(u — yDus) + Lsus | dn — £ (1, x2,%3), )
-1

0§k> = /71‘ {Ls (u* — nDuf) +763u§}d77 + /7]‘ {(x3 = n)D" [Ly(u* — yDus) + Lsui] } dnp + (s./7)
X / {(x3 ) {le(“k - nDu’é) +743u§} }dﬂ — fa(x1,x2,x3), (39)
-1

where u4 and u* are the higher-order modifications to middle surface displacements. The relevant functions
are given by

T
u = {uh(x1,x2) dh(x1,x2) },
X3

Sa(xX1,x2,x3) = —/

-1

3o B B - o? X3
+/ [t34¢3k + Ty + t33u(3k 1)]ATd’1 - |:_612 </ Pz¢3kd’7)
_ 0 -1

1

62 X3
7 (k=1)
o ( L pouy A |+,

_ {<f1k(x17x27x3)

[DTfk + 5ufin)r + Ly + lapy, — sty V) — iﬁsagkfl)}dn

X3 -
= T+ Tl | AT dy

1 1

X3
} - / {L“‘pk + Ls¢hy, + Leal ) + L7‘7(3k71)} dir - /

Sor (1,22, x3)

|5 | T 2 [ ot Nan) +
aT% » P19 an afoa‘[] . pu n ’

X3 _ - )
P (x1, 22, x3) = —/ [Llu("’” + IV — (0fess)at 2)} dn.
0
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P (x1,%2,x3)

X3
o= { il x2, %) } = / [Lzll“c’1> + Sdﬁkfl) + L36§~k72) - D¢3k} dn.
0

Imposition of the lateral boundary conditions (26) on (38) and (39) leads to the CST type equations with
nonhomogeneous terms carried over from the lower-order solution.

02 %k
K + Kol + Kl = fie(xi,x2, 1) + Iy ?(ué‘l) — [10—21, (40)
5 ot;
) 0? o*uk
Koyutf + Kooty + Kosuly = for(x1,%2, 1) + (111/7”)@(“15.2) - Iloﬁ, (41)
0 0
k k =\ & T 62“.%
K3]Lt1 +K32Ll2 + <K33 +KNT)U3 :f3k(x1,x2, 1) + D fk(xl,xz, 1) + (sa/r)flk(xl,xz, 1) _120—6‘52
0
0 Tk k 0 1o k
g IDTDU (5 | = T g DT () (42)

The differential operators Kj; for higher-order problems are the same as defined in the leading-order
problems. The nonhomogeneous terms at higher-order problems can be calculated from the lower-order
solutions. The solution procedure for the leading-order problem can therefore be repeatedly applied for the
solution to higher-order problems.

5. Thermal dynamic instability analysis
The solution procedure for solving for the thermal dynamic instability of cross-ply laminated conical

shells with simply supported boundary conditions is presented as follows.
The elastic moduli for an orthotropic layer are

O16 = O = 036 = 045 = 0. (43)
The simply supported boundary conditions for various orders are specified as:
=i =N =M =0 (k=0,1,2,...), (44)
where

1 1
Nf :/ a(lk)ygdx3, Mf :/ xga(lk)ygdm.
-1 -1

According to (4) and (8m), the dimensionless form of external thermal load AT is expressed in the form
of
AT = 0, ATo ¢ + aqAT b cos(Qry — ), (45)
where ATH = nAT, /0% Q= QR+\/p,/0; the phase angle ¥ is a function of 1,15, 13, ..., but not of 1.
5.1. The method of Fourier series expansion
The method of Fourier series expansion is used to eliminate the circumferential coordinate x, in the

formulation. By satisfying the periodicity condition, we let the displacements of the leading order be of the
form
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u(l) = N(l)(xl,‘t(),‘L'],‘L'z,...) COS nxy, (46)
uy = 3 (x1,70, 71, T2, - - ) SINMXy, (47)
uy = a3 (x1, T, T1, T2, - - .) COS X, (48)

where n denotes the circumferential wave number.
Substituting (46)—(48) into (33)—(35) yields the leading-order equations:

%)
o 0
mymyp om0 ki ki ki3 u)
Y o\ _
My My M3 = ¢t |k k ks uy 0 =0, (49)
7T ~0
ms3; msz M3z 0%l k3 k3 (k33+kNT) Us

9|

0
%

where

ki = —A110n + n*Aes/r” — Z11So¢al/”—|'1322S§/7’27

ki = *71(212 +266)61/V+ n(Ax + Ags )5,/ 17,

kis = B0y — n2(§12 + Bes + §66)61/r2 + EllSaan/l”-i- ’12<§12 + By + Bgs +E66)So¢/r3
- (lec“m/r—i-ﬁzzsi/rz)@] +21220a5a\/1W/’”2,

k= "(212 +266)al/” + n(;lzz +;166)Soc/r27

by = —AgeOn1 + A /r* — Aess,01 /7 + AessL/7,

ky = —n(§12 + §66 + 2}66)611/"" n°By /1 — n(By + Bes + Bes — 2§66)S“al/r2
+n Pzzcam/”z + (Bes + Bos — 2§66)Si/”3}a

k1 = —B10u +n2(§1z + Bss +§66)61/r2 - (En + Ell)suall/r+n2§22sa/r3

+ (zlzcm/R/h/r—|—§22s§/r2>61 +;122S“01\/R/h/l”2 —Fzzsi/l”3 — 311‘1611 +§2271S§/F2 +n2§6671/r2,

k32 = —I’Z(EQ —+ §66 —+ 566)611/1’ + n3§22/r3 + n<§22 +F66 — E(J(,)S“al/rz + I’l(zazzcm\/R/h/l"z —§22S§/I"3>
+’1(§22.1 +§66,1)Sa/”2,

ks = Doy — n? (2512 + Des + 2Des + 566)611/”2 +n*Dy/rt + (bn + Bu)saam/"
+ n2 (21366 + 566 +566 + 2512)5‘0(61/}"3 — (2?12C1\/R/h/7‘+522S§/7'2)611 + n2 |:2§22C1\/R/h/1"3
~ — ~ — ~ _ _ 2
- (2D12 + 2D22 + D66 +D66 + 2D66)s§/r4} +D22S361/V3 —|—A22 (Cz\/R/h/l") - BzzSiCoA/R/h/l"3

+ 511,16111 — "2566,151/V2 + ns, (522 + 566)71 /i’3 — SiBZZ,lal/”z + S,Cy\/ R/hgzz,l/FZ,
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kv = 9100 + (7182/r)01 = (7/77)
my = Lo, my3 =101, my="Lo, my=nu/r)n, my =I[(s./r)+ 0],
my =Iyn/r, my = by —Iy|(s,/r)01 4+ 01 — (n*/r7)],  mp=my =0.

Eq. (49) are a set of differential equations with variable coefficients. Furthermore, the stiffness coeflicients
(4;, Ai;, Bij, Bij, D;; and D;;) depend on the meridional coordinate x;. The DQ method is adopted for
solving the equations.

5.2. The method of differential quadrature

The method of DQ (Bellman and Casti, 1971; Bellman et al., 1972) was proposed for the solutions of
linear and nonlinear partial differential equations. In the DQ rule, a spatial derivative of an unknown
function at a particular sampling point is approximated as a weighted linear sum of the functional values at
all the sampling points in the spatial direction. Using the Lagarange polynomials as the test functions, Shu
and Richards (1992) presented the expressions of weighting coefficients of first and higher derivatives. The
boundary points and the zeros of the Chebyshev functions were suggested to be the sampling points (Bert
and Malik, 1997). A comprehensive literature review related to the application of the DQ method in
computational mechanics was made by Bert and Malik (1996, 1997). Application of the DQ method to
an asymptotic theory for free vibration problems of laminated composite conical shells was made in an
earlier paper (Wu and Wu, 2000). Hence, the corresponding expression of the DQ method is not repeated
here.

According to the DQ rule, the governing equations and the corresponding boundary conditions can be
replaced by a system of simultaneously linear algebraic equations in terms of the mid-surface displacements
at all the sampling points. A treatment commonly used in the literature (Du et al., 1994; Shu, 1996) is
adopted in the present study.

The first two governing equations in (49) are applied at the interior points (i = 2,3,...,N — 1) and the
third governing equation is applied at the interior points (i = 3,4, ..., N — 2). These resulting equations are
written by

A _ -
0 + {ochTCr cos (Q‘L’O - 1//)]

B

(Mg M) + [ (KII + OCSATchNI) (KIB + OCsATchNB> ] {

Ll
X [KNI KNB] 0 = 0, (50)
AB

where A{ consists of the unknowns !, @), & at the sampling points i = 3,4,..., (N —2) and &9, &) at the
sampling points i = 2 and (N — 1); A} consists of the unknowns i), &9, #) at the boundary points and #) at
the sampling points i = 2 and (N — 1).

In accordance with the DQ rule, the boundary conditions (44) at edges (x; = R; /sa\/R_h and R, /sa\/lﬁ)
are rewritten as

[Kpi KBB]{ié} =0. (51)
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Eq. (51) can be rewritten as Ag = —KEII;KBIA?. Substituting the resulting equations into (50) yields

2AY ~ _ -
Aaa—; + (B + 4, AT, C)A} + |0gAT,; cos(Qto — lp)} CA! =0, (52)
To

where A = MH — MIBKE:;KBI’ B= KH — KIBKE:;KBI and C = KNI — KNBK];]l;KBI-
5.3. Bolotin’s method

Eq. (52) is a system of generalized Mathieu-Hill equations that represents the dynamic instability be-
havior of laminated conical shells subjected to static and periodic thermal loads.

According to Bolotin’s method (Bolotin, 1964), the boundary frequencies of thermal dynamic instability
regions can be determined by letting A] as the following form

S (k= 1)@ - 9) (2%~ 1)(D1y — ¥)
A) = k; lagkl sin 5 + b9, | cos 5 , (53)
A =B+ S (a3, sin k(@7 — ) + b3, cos k(@r — )] (54)
k=1.2,...

Egs. (53) and (54) represent the infinite terms of periodic functions of time with period 4/ Q and 2 / Q,
respectively. It is well known that the solutions with period 47/ Q are of great practical importance due to
the fact that the unstable regions obtained using (53) are usually much larger than those regions obtained
using (54). Hence, the former is denoted as the primary instability region and the latter is the secondary
instability region. In view of the rapid convergence of Bolotin’s method, only the first few terms of (53) and
(54) will be adopted in the present study. The convergence of the K-term approximate solutions will be
examined.

5.3.1. The primary instability regions

Substituting (53) in (52), simplifying, and grouping the sine and cosine terms lead to two sets of linear
algebraic equations in aj, ; and b), (k= 1,2,...,K) for each K-term solution. The resulting equations are
given by

For the one-term solution (K = 1):

. (Q1y — 1 ~ Q?

s1nwterm: B+ <ocs — zocd)ATCrC - TA a) = 0; (55a)
Qrp — 1 ~ Q?

coswterm: B+ (as + zocd)ATch — TA b? =0. (55b)

For the two-term solution (K = 2):

~ P T ~2 o2 A,vz:r

sini(gro —¥) and sini?)(gro —¥) terms: Bt (ozs a %ad>ATCIC B QTA d 2T ¢

2 2 AT B+ 0,AT,C — 22 A

a0
x{é}& (56a)
3
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5 5 7o @ v
Q19 — 3(Q1y — B+ (o +1og)AT..C — LA Hlla C
cos(oz—lp) and cos%terms: (% +3 N) “ 4 2 N
2uilaC B+ %AT,C 22 A
bO
X9 .o =0 (56b)
b;
For the K-term solution:
(Ezzo - lp) 3(?21—0 . ¢) 2k — 1) (szo - 1//)
sin 3 , sin 5 . and sinf terms:
B+ (o — Log) AT, C — LA 8l C 0 0
2l C B+ 0,AT.C — A ller €
0 20l C B+ o AT,C - 22A - 0
ATy
ogq 3 C
L 0 0 WAl C B4 o AT, C — 22y |
al
a3
X aj =0, (57a)
ay
(Ezro - n//) 3(Ezr0 - 1//) 2k —1) (Ezro - l//)
cos 3 , COs 3 . and cosfterms:
B+ (o +109)AT,C — LA 8l C 0 0
(XdAzTcr C B+ aSA'fvch _ %A %AzTcr C
0 28T C B+ AT, C - 22 - 0
2 A~cr
d ZT C
oA T = 2%-1)° 02
L 0 0 2ble € B+ o AT, C — A
b
b
<3 b Ly (57b)
bgk—l

Observation of (55a)—(57b) reveals that the coefficient matrices related to sine and cosine terms appear in
a recurrent pattern through the K-term solution. For a fixed value of circumferential wave number n, we
can determine one-term approximate solutions for upper and lower bounds of the instability region by
setting the determinants of coefficients of (55a) and (55b) equal to zero, respectively. The solutions can then
be successively modified by using (56a)—(57a) and (56b)—(57b). The first instability region corresponding to
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the smallest eigenvalues is of great practical importance so that it is also denoted as the principal instability
region (Bolotin, 1964) and is the main concerns in the literature.

5.3.2. The secondary instability regions

Substituting (54) in (52), simplifying, and grouping the sine and cosine terms lead to two sets of linear
algebraic equations in aj, (k=1,2,...,K) and bgk (k=0,1,2,...,K) for each K-term solution. The re-
sulting equations are given by

For the one-term solution (K = 1):

sin (éro - lp) term: {B + AT, C — Q°A a) =0, (58a)
~ T MdA;cr b?
1 and cos (Qro - w) terms: | BT aS~ATch 2 C N { . } = 0. (58b)
2wAT,C B+ AT,C— Q°A| (b
For the two-term solution (K = 2):
~ - B+ o AT,C — Q°A bl 0
sin (Q‘L’o — l//) and sinZ(Qro — l//) terms: ~ ~2 N aé =0,
8T ¢ B+ % AT, C —4Q%A | (%4
(59a)
1,cos (?210 — lﬂ) and cosZ(f)ro — lp) terms:
B + %,AT,C 20T C 0 b
N o
2AT,C B+ AT,C— Q°A 2ATs C by o =0. (59b)
~ _ _ bO
0 28l C B+ o AT, C—4Q°A |
For the K-term solution:
sin (f)ro — \p),sinZ(éfo — 1//),. .. and sin 2k(f)10 — z//)terms:
B+ 4,AT,C — QA bl C 0 0
2l C B+ o, AT,.C — 4Q°A 2ulle C
0 wlle C B+ AT, C—9Q°A . 0
1dA2Tcr C
i 0 0 287 C B4 o AT, C — K> Q%A |
ay
al
x{ a5 L —o (60a)
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1,cos (f)ro - w),cos2(§ro - w),. .. and cosZk(f)ro - w)terms:

B+ o AT,.C AT © 0 . 0
2wAT.C B+ aAT,C— Q°A 28T C
0 28T C B+ oAT,C—4Q°A - 0
o A;u
d 5 C
i 0 0 28T C B+ o AT, C — 2 Q°A |
by
by
« b Ly (60b)
b,

Again, observation of (58a)—(60b) reveals that the coefficient matrices related to sine and cosine terms
appear in a recurrent pattern through the K-term solution. By setting the determinants of the coefficients of
(58a) and (58b) equal to zero, respectively, we can determine one-term approximate solutions for upper and
lower bounds of the secondary instability region for a fixed value of n. The solutions can then be succes-
sively modified by using (59a)-(60a) and (59b)—(60Db).

5.4. The orthonormality and solvability conditions

Since a set of unique solution is required in the present analysis, the modal unknowns are normalized by
imposing the orthonormality conditions:

(A} + €A, +s4Af+~--)T (A} + EA; + AT 4 ) = 1. (61)
According to (61), the orthonormality conditions for various orders are specified as
&-order: (AN AV =1, (62)

¢-order: (A))"-A) =1,

¢-order: (AT AV =1,
()" - A =0, (64)
Z(A?)T : A% + (A:)T . A: =0;...etc.
Carrying on the solution to order ¢?, we let the displacements of &¢* order be as follows.

u%(XI,XQ,TO,Tl, )= ﬁ% (x1,T0, Ty, - . .) COS NX7, (65)

ué(xl,)Q,T(),T],. . ) = ﬁé(xl,’l?(), Tly .- ) Sil’ll’l)Cz, (66)
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uy(X1,%2, 70, T1, - - - ) = s (X1, To, T, - - -) COS 12X (67)

Substituting (65)—(67) in the governing equations of &?-order (k = 1 in (40)—(42)) leads to

o%a)
. o,
my mp ms fzfﬁl ki ko ks i) S (xs )afl +f11( =1)
My My M3 ‘é:ﬁz + |k kas ~ i ¢ =4 fuls=1) zfl +f21( =1) ¢,
ms mzp m3 | | ol LS (k33 + kv T) il hii(xs = 1) 2’5} +hy(=1)

o))

3
T

(68)

where /3, :f31 +ﬁ1,1 ‘1‘”!;21/’”‘*‘%/;11/” and :f31 +f11,1 + nfyy /7 + suf /1
After applying the DQ rule to (68) and following the similar procedure as was done through (50)—(52),
we obtain
%A
A 1
ot]
Eq. (69) is solvable if and only if the solvability condition is satisfied (Nayfeh, 1993). The solvability
condition is given by

AT [f@l) +f] —0, (70)

where A; denotes the eigenvectors corresponding to the eigenvalues Q,
The dependence of y; upon 7, can then be determined as

Y= -4t + lﬁi(fb‘[% ) (71)

where /; = (AlT . f') / (AlT . f'); l;l- are functions of the scales 1,, 13, ..., that can be determined at the next-
order level.

With (71) and the relation 7, = &1y = (h/R)1o, the time functions of all field variables are now expressed
in terms of sin((2k — 1)[(9 + Jh/R)to — Y]/2), cos((2k — 1)[(Q + Ah/R)to — ¥]/2), sink[(Q + h/R)te — Y]
and cos k[(Q2 + Ah/R)to — ] . Hence, the upper and lower bounds of the dynamic instability regions at the
&2-order level have been modified as

n (B n ocSATCfC) Al + [adﬁ“ cos (Ez,»ro _y, )} CA! = f( 2‘” ) +f (69)

Q: + A(h/R). (72)
Substituting (71) in (69) yields
A ~ ~ - AP
A (B +%AToC) A} + [#ATercos (2ito — v ) | €A = —2f +1. (73)

By solving (73) with the orthonormality conditions (63), we can uniquely determine the values of A}
which denote the first-order modifications to the modal unknowns A!.

In view of the recurrence relationship between the leading-order and the higher-order problems, the
solution procedure can be continued to higher-order levels in a similar way.

6. Illustrative example

The thermally induced dynamic instability problems of simply supported, cross-ply laminated coni-
cal shells under static and periodic thermal loads are considered in Table 1 and Figs. 2 and 3. In the
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computations the material properties are given by Ey/Er =25, Gir/Er =0.5, Grr/Er =0.2, vir =
vir = 0.25, op = 30, Et = 6.89 x 10° kN/m? (or 10° psi), oy = 6.3 x 1076 1/°C, and p/p, = 1. The fre-
quency parameter Q is normalized as Q = QR,+/2ph/A;;.

Before we proceed to the thermal dynamic instability analysis, a counterpart problem has to be analyzed
in advance where the identical shell is subjected to a static temperature field

(T, + ) , (T~ T)
2 2h

in which 7, and 7; denote the temperature change at the outer and inner surfaces of the shell, respec-
tively. Through nondimensionalization and normalization, we have ¢(x;) = /3/26(2 — x3) and AT, =
V/26/3(T,),, at the critical state. According to the results of a static thermoelastic buckling analysis (Wu
and Chiu, 2001), the temperature fields at the critical state are [166.7 °C ¢(x3)] (i.e., AT, = 166.7 °C) for [0/
90] and [265.8 °C <f;(x3)] (ie., AT, = 265.8 °C) for [0/90/0/90] laminated shells. The circumferential wave
numbers for the corresponding buckling modes in both cases are computed to be three (i.e., n = 3).

In the present analysis, o and oy portions of the temperature field at the critical state in the thermoelastic
buckling analysis are taken as the magnitudes of static and periodic thermal loads, respectively, where
os + og < 1. Hence, the temperature field is given as

{ and T, =3T, (74)

Table 1
The first primary and secondary instability regions for the cross-ply conical shells
Laminates Instability Trigonomet- K-term ap- Present asymptotic solutions
regions ric functions proximations & &2 o
[0/90] Primary Sin 1 0.3663 0.3555 0.3556
2 0.3682 0.3626 0.3626
3 0.3682 0.3635 0.3633
Cos 1 0.2391 0.2287 0.2290
2 0.2467 0.2399 0.2398
3 0.2467 0.2410 0.2406
Secondary Sin 1 0.1548 0.1496 0.1497
2 0.1592 0.1548 0.1548
3 0.1594 0.1552 0.1551
Cos 1 0.1269 0.1219 0.1220
2 0.1333 0.1284 0.1284
3 0.1336 0.1290 0.1287
[0/90/0/90] Primary Sin 1 0.4431 0.4244 0.4246
0.4457 0.4395 0.4395
3 0.4457 0.4402 0.4400
Cos 1 0.2656 0.2447 0.2450
2 0.2789 0.2682 0.2678
3 0.2790 0.2693 0.2681
Secondary Sin 1 0.1827 0.1732 0.1734
0.1890 0.1837 0.1837
3 0.1891 0.1840 0.1837
Cos 1 0.1360 0.1258 0.1261
2 0.1506 0.1429 0.1427
3 0.1510 0.1433 0.1426

2h/Ry = 0.1, L/R =5 N =21, n=3, 0=45, o, =0.2, 0y = 0.8; Q = QRy/2ph/A,,.
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0.4 ——————1————
— a=60"
b e o=30" L

Fig. 3. The principal instability regions of [0/90/0/90] laminated conical shells.

AT = 0,AT, L\/§/2—6(2 - x3)J + 4gAT, [\/3/7(2 - x3)J cos Q1. (75)

The boundary frequencies of first primary and secondary instability regions for [0/90] and [0/90/0/90]
laminated conical shells are given in Table 1. The geometry parameters are o = 45°, L/R, = 5, 2h/R; = 0.1.
The static and dynamic parameters of the temperature field are taken as o, = 0.2 and oy = 0.8, respectively.
The convergence of the present asymptotic theory and Bolotin’s method is examined. It is shown that the
convergent solution is obtained at the ¢*-order level with the three-term approximations. It is well known
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that for [0/90],, antisymmetric laminates of constant thickness, the extension-bending coupling stiffnesses
will decrease as the number of layers (i.e., 2m) increase. The effect of extension-bending coupling stiffnesses
on the boundary frequencies of instability regions can then be evaluated by observing the results of [0/90]
and [0/90/0/90] laminated shells. It is noted that the boundary frequencies of the instability regions decrease
as the extension-bending coupling stiffnesses increase.

A parametric study for thermal dynamic instability of [0/90/0] and [0/90/0/90] laminated shells is shown
in Figs. 2 and 3, respectively. The variations with semivertex angle o, thickness-to-radius ratio 24/R; and
dynamic parameter oy on the principal instability regions are shown. The geometry parameters are « = 30°,
60°; L/Ry = 5; 2h/Ry = 0.01, 0.1. The static and dynamic parameters of the thermal field are taken as
os = 0.2 and ag = 0.2-0.8. It is noted that the boundary frequencies of the dynamic instability regions
increase as the thickness-to-radius ratio increase. The effect of transverse deformation on the boundary
frequencies is much notable than the change of the semivertex angle. The range of the dynamic instability
regions increase as the dynamic parameter of the temperature field increase.

7. Conclusions

In conjunction with the method of DQ and Bolotin’s method, the asymptotic solution for thermally
induced dynamic instability of laminated composite conical shells under static and periodic thermal loads is
presented. The temperature field is considered a periodic function in time and a certain distributed function
in the thickness direction. The convergent solution of the present asymptotic theory is obtained at the &*-
order level with the three-term approximations. Furthermore, the present asymptotic formulation is ap-
plicable to the free vibration analysis of the laminated conical shells in the absence of thermal loads.
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