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Abstract

Thermally induced dynamic instability of laminated composite conical shells is investigated by means of a pertur-

bation method. The laminated composite conical shells are subjected to static and periodic thermal loads. The linear

instability approach is adopted in the present study. A set of initial membrane stresses due to the elevated temperature

field is assumed to exist just before the instability occurs. The formulation begins with three-dimensional equations of

motion in terms of incremental stresses perturbed from the state of neutral equilibrium. After proper nondimension-

alization, asymptotic expansion and successive integration, we obtain recursive sets of differential equations at various

levels. The method of multiple scales is used to eliminate the secular terms and make an asymptotic expansion feasible.

Using the method of differential quadrature and Bolotin’s method, and imposing the orthonormality and solvability

conditions on the present asymptotic formulation, we determine the boundary frequencies of dynamic instability re-

gions for various orders in a consistent and hierarchical manner. The principal instability regions of cross-ply conical

shells with simply supported–simply supported boundary conditions are studied to demonstrate the performance of the

present asymptotic theory. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Dynamic instability; Conical shells; Thermal loads; Perturbation; Asymptotic expansion; Differential quadrature method;

Three-dimensional analysis

1. Introduction

Research topics related to dynamic instability of elastic systems have received substantial attention
through the years (Bolotin, 1964). The subject deals with the dynamic behavior of elastic systems subjected
to external static and dynamic loads. In the analyses of these problems, the boundary frequencies of dy-
namic instability regions for a system of generalized Mathieu-Hill equations are determined. General
concepts and comprehensive investigations of various isotropic structural components can be found in the
literature (Beliaev, 1924; Bolotin, 1964; Koval, 1974).

In recent decades, composite materials were increasingly used in the industrial applications. Dynamic
instability of laminated composite plates and shells was therefore studied. Argento and Scott (1993a,b) and
Argento (1993) analyzed the dynamic instability of layered anisotropic circular cylindrical shells under
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periodic axial loads and combination of the periodic axial and torsional loads. The variations of instability
regions with the circumferential wave number and the magnitude of external loads were investigated. Bert
and Birman (1988) presented a detailed study on the dynamic instability of thick laminated cylindrical
shells. The effect of transverse deformation on the principal instability region was studied. Based on Love’s
classical theory, Ng et al. (1998) examined the effect of the magnitude of axial loads on the instability
regions. Using an extension of Donnell’s shell theory to a first-order shear deformation theory (FSDT), Ng
et al. (1999) estimated the effects of thickness-to-radius ratio on the instability regions. Comparisons of
instability regions generated using various classical shell theories (CST) (i.e., Donnell’s, Love’s and Fl€uugge’s
shell theories) were made by Ng and Lam (1999).

After making a literature survey, we found that most of the articles deal with dynamic instability of
laminated cylindrical shells under various external periodic mechanical loads. The analysis of thermal
dynamic instability has received less attention. Birman and Bert (1990) presented the dynamic instability
analysis of reinforced composite cylindrical shells in thermal fields. On the basis of a FSDT, an identical
study was presented by Ganapathi and Touratier (1998).

The aforementioned papers presented the two-dimensional (2D) results for the dynamic instability
analysis of laminates subjected to static and periodic thermomechanical loads. A detailed study for the
three-dimensional (3D) analysis of thermal dynamic instability is lacking. Hence, the present paper aims at
developing a 3D formulation for the dynamic instability analysis of laminated conical shells subjected to
static and periodic thermal loads by means of a perturbation method.

Asymptotic differential quadrature (DQ) solutions for the thermal dynamic instability analysis of
laminated circular conical shells are presented in this paper. It is an extension to the recent studies related to
asymptotic theories for free vibration (Wu and Wu, 2000) and for thermal buckling (Wu and Chiu, 2001)
problems. The linear instability approach is considered in the present formulation. A geometric small
perturbation parameter and a set of dimensionless field variables are defined. Through nondimensional-
ization, asymptotic expansion and successive integration, the asymptotic theory finally turns out recursive
sets of CST governing equations for various orders. The method of multiple scales (Nayfeh, 1993) is used to
eliminate the secular terms and make the asymptotic expansion feasible. Using Fourier series expansion in
the circumferential coordinate, the recursive sets of governing equations can be reduced to systems of
partial differential equations where the derivatives are with respect to the meridional coordinate and the
time variable. According to the DQ rule, we replace the resulting governing equations and the corre-
sponding boundary conditions for various orders as systems of generalized Mathieu-Hill equations. The
solution procedure suggested by Bolotin (1964) is used to determine the boundary frequencies of dynamic
instability regions at the leading-order level. Imposing of the orthonormality and solvability conditions for
higher-order problems, the higher-order modifications to boundary frequencies can be uniquely determined
in a hierarchical and consistent manner.

2. Basic three-dimensional equations

Consider a laminated composite conical shell as shown in Fig. 1. The material properties are considered
to be piecewise-constant functions of the thickness coordinate. A set of the conical coordinates (s; h; f) is
located on the middle surface. R1 and R2 are the radii of the cone at the small and large edges, respectively. a
is semivertex angle of the cone, 2h denotes the shell thickness, and L is the slant length of the cone.

According to the assumptions of the linear instability approach, a set of membrane state of stress exists
in the shell just before instability occurs (Leissa, 1995; Tauchert, 1987, 1991). The set of membrane stresses
is regarded as the initial stresses and is introduced into the variational equations (Bolotin, 1964). The in-
cremental stresses associated with the small incremental displacements perturbed from the state of neutral
equilibrium will be considered.
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Referring to the configuration of the initial membrane state of stress, the motion equations are given by
(Saada, 1974; Soedel, 1993)

hhrs;s þ sars � sarh þ ssh;h þ cassf þ hhssf;f � rt
sðhhus;sÞ;s �ðrt

h=hhÞ us;hh

�
� s2aus � 2sauh;h � sacauf

�
� stsh 2us;sh½ � 2sauh;s� ¼ qhhus;tt; ð1Þ

2sassh þ hhssh;s þ rh;h þ 2cashf þ hhshf;f � rt
sðhhuh;sÞ;s �ðrt

h=hhÞ 2saus;h½ þ uh;hh � uh þ 2cauf;h�
� stsh 2saus;s½ þ 2uh;sh þ 2cauf;s� ¼ qhhuh;tt; ð2Þ

�carh þ sassf þ hhssf;s þ shf;h þ carf þ hhrf;f � rt
s hhuf;sð Þ;s � rt

h=hh

� ��
� sacaus � 2cauh;h þ uf;hh � c2auf

�
� stsh½ � 2cauh;s þ 2uf;sh� ¼ qhhuf;tt; ð3Þ

where q is the mass density; hh ¼ ssa þ fca, sa ¼ sin a and ca ¼ cos a; rs, rh, rf, ssf, shf and ssh are the in-
cremental stresses; us, uh and uf are the incremental displacements; the commas stand for differentiation
with respect to the suffix variables; rt

s, rt
h and stsh denote the initial membrane stresses due to a temperature

change DT .

Fig. 1. The geometry and coordinate system for a laminated conical shell.
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In the present study, the temperature change DT is considered a periodic function in time and a certain
distributed function in the thickness coordinate

DT ¼ asDTcr/ fð Þ þ adDTcr/ fð Þ cosXt; ð4Þ
where as and ad are the static and dynamic parameters related to the critical value of the temperature field in
the static thermoelastic buckling problem (Wu and Chiu, 2001); X is the angular frequency of the tem-
perature field. The time variable is represented as t, and the distributed temperature function /ðfÞ is
normalized as

R h
�h /2ðfÞdf ¼ 1.

The corresponding relations between (rt
s; r

t
h; s

t
sh) and DT for a monoclinic material are rt

s ¼ gsDT ,
rt

h ¼ ghDT , stsh ¼ gshDT and

gs

gh

gsh

8<:
9=; ¼

c11 c12 c13 c16
c12 c22 c23 c26
c16 c26 c36 c66

24 35 c2ha1 þ s2ha2

s2ha1 þ c2ha2

a3

2chshða1 � a2Þ

8>><>>:
9>>=>>;; ð5Þ

where cij denote the stiffness coefficients; a1, a2 and a3 are the coefficients of thermal expansion along
principal material axes; ch, sh ¼ ðcos; sinÞh.

The incremental stress–strain relations for a monoclinic material are given by (Saada, 1974)

rs

rh

rf

shf

ssf
ssh

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

26666664

37777775
es
eh

ef

chf

csf
csh

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð6Þ

where es, eh, ef, csf, chf, csh are the incremental strain components.
The kinematics relations between the incremental strains and incremental displacements are written as

(Saada, 1974)

es
eh

ef

csf
chf

csh

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

os 0 0
sa=hh oh=hh ca=hh

0 0 of

of 0 os
0 of � ðca=hhÞ oh=hh

oh=hh os � ðsa=hhÞ 0

26666664

37777775
us
uh

uf

8<:
9=;; ð7Þ

in which os ¼ o=os, oh ¼ o=oh, of ¼ o=of.

3. Nondimensionalization and asymptotic expansion

A set of dimensionless field variables is used in the present formulation and defined as follows:

x1 ¼ s=Re; x2 ¼ h; x3 ¼ f=h; ð8a–cÞ

u1 ¼ us=Re; u2 ¼ uh=Re; u3 ¼ uf=R; ð8d–fÞ

r1 ¼ rs=Q; r2 ¼ rh=Q; s12 ¼ ssh=Q; ð8g–iÞ

s13 ¼ ssf=Qe; s23 ¼ shf=Qe; ð8j; kÞ
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r3 ¼ rf=Qe2; ð8lÞ

DeTT ¼ gDT=Qe2; ð8mÞ

egg1 ¼ gs=g; egg2 ¼ gh=g; egg6 ¼ gsh=g; ð8n–pÞ
where e2 ¼ h=R is a small parameter, usually much less than 1; R denotes a characteristic length of the shell;
g and Q are reference thermoelastic moduli; DeTT ¼ eTT e//ðx3Þ in which eTT ¼ ðasDTcr þ adDTcr cosXtÞg=Qe2 ande//ðx3Þ ¼ /ðfÞ.

The dimensionless multiple time scales are introduced in the formulation and defined in the following
form

sk ¼ e2k
ffiffiffiffiffiffiffiffiffiffiffi
Q=q0

p
t=R ðk ¼ 0; 1; 2; . . .Þ; ð9Þ

where q0 is the reference mass density.
The increments of the displacements (us; uh; uf) and transverse stresses (ssf; shf; rf) are regarded as the

primary field variables. After eliminating the in-surface stresses rs, rh and ssh from (1)–(7) we reformulate
the 3D equations of motion in the dimensionless form as

u3;3 ¼ �e2L1u� e2~ll33u3 þ e4ðQ=c33Þr3; ð10Þ

u;3 ¼ �Du3 þ e2L2uþ e2Srs þ e4L3rs; ð11Þ

rs;3 ¼ �L4u� L5u3 � e2L6rs � e2L7r3 þ e2ðT1uþ T2u3ÞDeTT
þ q1

o2

os20

�
þ 2e2

o2

os0 os1
þ e4 2

o2

os0 os2

�
þ o2

os21

�
þ � � �

�
u; ð12Þ

r3;3 ¼ L8uþ ~ll63u3 �DTrs � s13sa=r � e2~ll64s13 � e2~ll65r3 þ ~tt34u3
h

þ e2 T3u
�

þ ~tt33u3
�i

DeTT
þ q2

o2

os20

�
þ 2e2

o2

os0 os1
þ e4 2

o2

os0 os2

�
þ o2

os21

�
þ � � �

�
u3; ð13Þ

rm ¼ L9uþ L10u3 þ e2L11r3; ð14Þ

where

u ¼
u1
u2

� �
; rs ¼

s13
s23

� �
; rm ¼

r1

r2

s12

8><>:
9>=>;; D ¼

~ll13
~ll23

" #
; S ¼

~ll14 ~ll15
~ll15 ~ll25

" #
; L1 ¼ ~ll31 ~ll32

� �
;

L2 ¼
0 0
0 ~ll22

� �
; L3 ¼

0 0
~ll26 ~ll27

� �
; L4 ¼

~ll41 ~ll42
~ll51 ~ll52

� �
; L5 ¼

~ll43
~ll53

� �
; L6 ¼

~ll44 0
0 ~ll55

� �
;

L7 ¼
~ll46
~ll56

� �
; L8 ¼ ~ll61 ~ll62

� �
; L9 ¼

~ll71 ~ll72
~ll81 ~ll82
~ll91 ~ll92

24 35; L10 ¼
~ll73
~ll83
~ll93

24 35; L11 ¼
~cc13
~cc23
~cc36

24 35;
T1 ¼

~tt11 ~tt12
~tt21 ~tt22

� �
; T2 ¼

~tt13
~tt23

� �
; T3 ¼ ~tt31 ~tt32

� �
; r ¼ x1sa;

C.-P. Wu, S.-J. Chiu / International Journal of Solids and Structures 39 (2002) 3001–3021 3005



q1 ¼ ðq=q0Þðh=RÞch; q2 ¼ ðq=q0Þch:

The detailed expressions of ~llij in the matrices Li (i ¼ 1–11) and ~ttij in Ti (i ¼ 1–3) can be found in an early
paper (Wu and Chiu, 2001).

Noting that (10)–(14) contain only even power terms of e, we expand the displacements and stresses as

f ðx1; x2; x3; s0; s1; . . . ; eÞ ¼ f ð0Þðx1; x2; x3; s0; s1; . . .Þ þ e2f ð1Þðx1; x2; x3; s0; s1; . . .Þ
þ e4f ð2Þðx1; x2; x3; s0; s1; . . .Þ þ � � � ; ð15Þ

where f ¼ rij, ui.
After substituting (15) into (10)–(14) and collecting coefficients of equal powers of e, we obtain the

following sets of equations for various orders.

Order e0:

uð0Þ3;3 ¼ 0; ð16Þ

u
ð0Þ
;3 ¼ �Duð0Þ3 ; ð17Þ

r
ð0Þ
s;3 ¼ �L4u

ð0Þ � L5u
ð0Þ
3 þ q1

o2uð0Þ

os20
; ð18Þ

r
ð0Þ
3;3 ¼ L8u

ð0Þ þ ~ll63u
ð0Þ
3 �DTrð0Þ

s � sð0Þ13 sa=r þ ~tt34u
ð0Þ
3 DeTT þ q2

o2uð0Þ3

os20
; ð19Þ

rð0Þ
m ¼ L9u

ð0Þ þ L10u
ð0Þ
3 : ð20Þ

Order e2k (k ¼ 1; 2; 3; . . .):

uðkÞ3;3 ¼ �L1u
ðk�1Þ � ~ll33u

ðk�1Þ
3 þ ðQ=c33Þrðk�2Þ

3 ; ð21Þ

u
ðkÞ
;3 ¼ �DuðkÞ3 þ L2u

ðk�1Þ þ Srðk�1Þ
s þ L3r

ðk�2Þ
s ; ð22Þ

r
ðkÞ
s;3 ¼ �L4u

ðkÞ � L5u
ðkÞ
3 � L6r

ðk�1Þ
s � L7r

ðk�1Þ
3 þ T1u

ðk�1Þ
h

þ T2u
ðk�1Þ
3

i
DeTT

þ q1

o2uðkÞ

os20

�
þ 2

o2uðk�1Þ

os0 os1
þ 2

o2uðk�2Þ

os0 os1

�
þ o2uðk�2Þ

os21

�
þ � � �

�
; ð23Þ

rðkÞ
3;3 ¼ L8u

ðkÞ þ ~ll63u
ðkÞ
3 �DTrðkÞ

s � sðkÞ13 sa=r � ~ll64s
ðk�1Þ
13 � ~ll65r

ðk�1Þ
3 þ ~tt34u

ðkÞ
3 DeTT þ T3u

ðk�1Þ
h

þ ~tt33u
ðk�1Þ
3

i
DeTT

þ q2

o2uðkÞ3

os20

"
þ 2

o2uðk�1Þ
3

os0 os1
þ 2

o2uðk�2Þ
3

os0 os1

 
þ o2uðk�2Þ

3

os21

!
þ � � �

#
; ð24Þ

rðkÞ
m ¼ L9u

ðkÞ þ L10u
ðkÞ
3 þ L11r

ðk�1Þ
3 ; ð25Þ

where displacement and stress components f ðjÞ ¼ 0 for j < 0.
The associated dimensionless boundary conditions for various orders are described as follows: on the

inner and outer surfaces the following traction conditions must be satisfied:

sðkÞ13 ; s
ðkÞ
23 ; r

ðkÞ
3

h i
¼ 0; 0; 0½ � ðk ¼ 0; 1; 2; . . .Þ on x3 ¼ 	1: ð26Þ
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Along the edges at x1 ¼ 0 and L=
ffiffiffiffiffiffi
Rh

p
, one member of each pair of the following quantities must be sat-

isfied:

n1r
ð0Þ
1 þ n2s

ð0Þ
12 ¼ p1; or uð0Þ1 ¼ u1; ð27aÞ

n1s
ð0Þ
12 þ n2r

ð0Þ
2 ¼ p2; or uð0Þ2 ¼ u2; ð27bÞ

n1r
ð0Þ
13 þ n2s

ð0Þ
23 ¼ p3; or uð0Þ3 ¼ u3 ð27cÞ

and

n1r
ðkÞ
1 þ n2s

ðkÞ
12 ¼ 0; or uðkÞ1 ¼ 0 ðk ¼ 1; 2; 3; . . .Þ; ð28aÞ

n1s
ðkÞ
12 þ n2r

ðkÞ
2 ¼ 0; or uðkÞ2 ¼ 0 ðk ¼ 1; 2; 3; . . .Þ; ð28bÞ

n1s
ðkÞ
13 þ n2s

ðkÞ
23 ¼ 0; or uðkÞ3 ¼ 0 ðk ¼ 1; 2; 3; . . .Þ; ð28cÞ

where p1 ¼ ps=Q, p2 ¼ ph=Q, p3 ¼ pf=Qe; u1 ¼ us=
ffiffiffiffiffiffi
Rh

p
, u2 ¼ uh and u3 ¼ uf=R. (ps, ph, pf) and (us, uh, uf)

are prescribed traction and displacement components, respectively.

4. Asymptotic formulation

4.1. The leading-order level

Integrating the asymptotic equations (16)–(19) and applying the lateral boundary conditions (26) at the
inner surfaces (x3 ¼ �1), we obtain

uð0Þ3 ¼ u03ðx1; x2Þ; ð29Þ

uð0Þ ¼ u0 x1; x2ð Þ � x3Du03; ð30Þ

rð0Þ
s ¼ �

Z x3

�1

L4 u
0

��
� gDu03

�
þ L5u03

�
dg þ o2

os20

Z x3

�1

q1ðu0
�

� gDu03Þdg

�
; ð31Þ

rð0Þ
3 ¼

Z x3

�1

½L8 u
0

�
� gDu03

�
þ ~ll63u03�dg þ

Z x3

�1

ðx3
%

� gÞDT L4 u
0

��
� gDu03

�
þ L5u03

�&
dg þ sa=rð Þ

�
Z x3

�1

ðx3
n

� gÞ L12 u
0

�h
� gDu03

�
þ ~ll43u03

io
dg �

Z x3

�1

~tt34u03DeTT� �
dg þ

Z x3

�1

q2 dg

� �
o2u03
os20

� o2

os20

�
Z x3

�1

x3ð
�

� gÞq1D
T u0
�

� gDu03
�
dg

�
� o2

os20

Z x3

�1

x3ð
�

� gÞq1ðsa=rÞ u01
�

� gu03;1
�
dg

�
; ð32Þ

where u03ðx1; x2Þ, u0 ¼ u01ðx1; x2Þ u02ðx1; x2Þ
% &T

represent the middle surface displacements; L12 ¼ ~ll41 ~ll42
� �

in which the detailed expressions of ~ll41 and ~ll42 can also be found in an early paper (Wu and Chiu, 2001).
Imposing the lateral boundary conditions (26) at the outer surface (x3 ¼ 1) on (31) and (32) and sim-

plifying the resulting equations, we can rewrite (31) and (32) as

K11u01 þ K12u02 þ K13u03 ¼ I11
o2

os20
ðu03;1Þ � I10

o2u01
os20

; ð33Þ
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K21u01 þ K22u02 þ K23u03 ¼ ðI11=rÞ
o2

os20
ðu03;2Þ � I10

o2u02
os20

; ð34Þ

K31u01 þ K32u02 þ ðK33 þ KN
eTT Þu03 ¼ I12

o2

os20
ðDTDu03 þ sau03;1=rÞ � I20

o2u03
os20

� I11
o2

os20
ðDTu0 þ sau01=rÞ; ð35Þ

where Kij are the differential operators. For brevity, the operators for cross-ply laminated shells are given by

K11 ¼ �ðbAA11o11 þ �AA66o22=r2 þ eAA11sao1=r � �AA22s2a=r
2Þ;

K12 ¼ � ðeAA12

h
þ eAA66Þo12=r � ð�AA22 þ �AA66Þsao2=r2

i
;

K13 ¼ bBB11o111 þ ðeBB12 þ B66 þ eBB66Þo122=r2 þ eBB11sao11=r � ðeBB12 þ B22 þ eBB66 þ B66Þsao22=r3

� ðeAA12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r þ B22s2a=r

2Þo1 þ �AA22saca

ffiffiffiffiffiffiffiffi
R=h

p
=r2;

K21 ¼ � ðeAA12

h
þ eAA66Þo12=r þ ð�AA22 þ �AA66Þsao2=r2

i
;

K22 ¼ � bAA66o11

�
þ �AA22o22=r2 þ eAA66sao1=r � �AA66s2a=r

2
�
;

K23 ¼ ðeBB12 þ bBB66 þ eBB66Þo112=r þ B22o222=r3 þ ðB22 þ B66 þ eBB66 � 2bBB66Þsao12=r2

� �AA22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r2

h
þ ðeBB66 þ B66 � 2bBB66Þs2a=r3

i
o2;

K31 ¼ �bBB11o111 � ðeBB12 þ B66 þ eBB66Þo122=r2 � ðeBB11 þ bBB11Þsao11=r � B22sao22=r3

þ ðeAA12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r þ B22s2a=r

2Þo1 þ �AA22saca

ffiffiffiffiffiffiffiffi
R=h

p
=r2 � B22s3a=r

3 � bBB11;1o11 þ B22;1s2a=r
2 � B66;1o22=r2;

K32 ¼ �ðeBB12 þ bBB66 þ eBB66Þo112=r � B22o222=r3 þ ðB22 þ B66 � eBB66Þsao12=r2

þ ð�AA22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r2 � B22s2a=r

3Þo2 þ ðB22 þ B66Þ;1 sao2=r2;

K33 ¼ bDD11o1111 þ ð2eDD12 þ D66 þ 2eDD66 þ bDD66Þo1122=r2 þ D22o2222=r þ ðeDD11 þ bDD11Þsao1111=r

� ð2bDD66 þ eDD66 þ D66 þ 2eDD12Þsao122=r3 � ð2eBB12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r þ D22s2a=r

2Þo11 � 2B22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r3

h
� ð2eDD12 þ 2D22 þ eDD66 þ D66 þ 2bDD66Þs2a=r4

i
o22 þ D22s3ao1=r

3 þ �AA22ðca

ffiffiffiffiffiffiffiffi
R=h

p
=rÞ2 � B22s2aca

ffiffiffiffiffiffiffiffi
R=h

p
=r3

þ bDD11;1o1111 þ D66;1o122=r2 � saðD22 þ D66Þ;1 o22=r3 � s2aD22;1o1=r2 þ saca

ffiffiffiffiffiffiffiffi
R=h

p
B22;1=r2;

KN ¼ ĉc1o11 þ c2=r
2

� �
o22 þ ecc1sa=rð Þo1;

I10 ¼
Z 1

�1

q1 dx3; I11 ¼
Z 1

�1

q1x3 dx3; I12 ¼
Z 1

�1

q1x
2
3 dx3; I20 ¼

Z 1

�1

q2 dx3;

bAAij
eAAij

�AAij

h i
¼
Z 1

�1

eQQij ch 1 ð1=chÞ½ �dx3;
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bBBij
eBBij Bij

� �
¼
Z 1

�1

eQQijx3 ch 1 ð1=chÞ½ �dx3;

bDDij
eDDij Dij

� �
¼
Z 1

�1

eQQijx
2
3 ch 1 ð1=chÞ½ �dx3;

ĉcij eccij cij
h i

¼
Z 1

�1

eggij
e// ch 1 ð1=chÞ½ �dx3:

4.2. The higher-order levels

Integrating (21)–(24), we obtain

uðkÞ3 ¼ uk3ðx1; x2Þ þ /3kðx1; x2; x3Þ; ð36Þ

uðkÞ ¼ uk x1; x2ð Þ � x3Duk3 þ /k x1; x2; x3ð Þ; ð37Þ

rðkÞ
s ¼ �

Z x3

�1

L4ðuk
�

� gDuk3Þ þ L5uk3
�
dg � fk x1; x2; x3ð Þ; ð38Þ

rðkÞ
3 ¼

Z x3

�1

L8 u
k

�h
� gDuk3

�
þ ell63uk3idg þ

Z x3

�1

ðx3
%

� gÞDT L4 u
k

��
� gDuk3

�
þ L5uk3

�&
dg þ ðsa=rÞ

�
Z x3

�1

x3ð
n

� gÞ L12 u
k

�h
� gDuk3

�
þ ell43uk3iodg � f3kðx1; x2; x3Þ; ð39Þ

where uk3 and u
k are the higher-order modifications to middle surface displacements. The relevant functions

are given by

uk ¼ uk1ðx1; x2Þ uk2ðx1; x2Þ
% &T

;

f3kðx1; x2; x3Þ ¼ �
Z x3

�1

DTfk

h
þ saf1k=r þ L8/k þ ~ll63/3k � ~ll64s

ðk�1Þ
13 � ~ll65r

ðk�1Þ
3

i
dg

þ
Z x3

�1

~tt34/3k

h
þ T3u

ðk�1Þ þ ~tt33u
ðk�1Þ
3

i
DeTT dg � o2

os20

Z x3

�1

q2/3k dg

� ��

þ o2

os0os1
2

Z x3

�1

q2u
ðk�1Þ
3 dg

� �
þ � � �

�
;

fk ¼
f1kðx1; x2; x3Þ

f2kðx1; x2; x3Þ

( )
¼
Z x3

�1

L4/k

h
þ L5/3k þ L6r

ðk�1Þ
s þ L7r

ðk�1Þ
3

i
dg �

Z x3

�1

T1u
ðk�1Þ

h
þ T2u

ðk�1Þ
3

i
DeTT dg

� o2

os20

Z x3

�1

q1/k dg

� ��
þ o2

os0 os1
2

Z x3

�1

q1u
ðk�1Þ dg

� �
þ � � �

�
;

/3kðx1; x2; x3Þ ¼ �
Z x3

0

L1u
ðk�1Þ

h
þ ~ll33u

ðk�1Þ
3 � ðQ=c33Þrðk�2Þ

3

i
dg;
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/k ¼
/1kðx1; x2; x3Þ
/2kðx1; x2; x3Þ

� �
¼
Z x3

0

L2u
ðk�1Þ�

þ Srðk�1Þ
s þ L3r

ðk�2Þ
s �D/3k

�
dg:

Imposition of the lateral boundary conditions (26) on (38) and (39) leads to the CST type equations with
nonhomogeneous terms carried over from the lower-order solution.

K11uk1 þ K12uk2 þ K13uk3 ¼ f1kðx1; x2; 1Þ þ I11
o2

os20
ðuk3;1Þ � I10

o2uk1
os20

; ð40Þ

K21uk1 þ K22uk2 þ K23uk3 ¼ f2kðx1; x2; 1Þ þ ðI11=rÞ
o2

os20
ðuk3;2Þ � I10

o2uk2
os20

; ð41Þ

K31uk1 þ K32uk2 þ K33

�
þ KN

eTT �uk3 ¼ f3kðx1; x2; 1Þ þDTfkðx1; x2; 1Þ þ ðsa=rÞf1kðx1; x2; 1Þ � I20
o2u13
os20

þ I12
o2

os20
½DTDuk3 þ ðsa=rÞuk3;1� � I11

o2

os20
½DTuk þ ðsa=rÞuk1�: ð42Þ

The differential operators Kij for higher-order problems are the same as defined in the leading-order
problems. The nonhomogeneous terms at higher-order problems can be calculated from the lower-order
solutions. The solution procedure for the leading-order problem can therefore be repeatedly applied for the
solution to higher-order problems.

5. Thermal dynamic instability analysis

The solution procedure for solving for the thermal dynamic instability of cross-ply laminated conical
shells with simply supported boundary conditions is presented as follows.

The elastic moduli for an orthotropic layer are

Q16 ¼ Q26 ¼ Q36 ¼ Q45 ¼ 0: ð43Þ

The simply supported boundary conditions for various orders are specified as:

uk2 ¼ uk3 ¼ Nk
1 ¼ Mk

1 ¼ 0 ðk ¼ 0; 1; 2; . . .Þ; ð44Þ

where

Nk
1 ¼

Z 1

�1

rðkÞ
1 ch dx3; Mk

1 ¼
Z 1

�1

x3r
ðkÞ
1 ch dx3:

According to (4) and (8m), the dimensionless form of external thermal load DeTT is expressed in the form
of

DeTT ¼ asDeTTcr
e// þ adDeTTcr

e// cosðeXXs0 � wÞ; ð45Þ

where DeTTcr ¼ gDTcr=Qe2; eXX ¼ XR
ffiffiffiffiffiffiffiffiffiffiffi
q0=Q

p
; the phase angle w is a function of s1; s2; s3; . . . ; but not of s0.

5.1. The method of Fourier series expansion

The method of Fourier series expansion is used to eliminate the circumferential coordinate x2 in the
formulation. By satisfying the periodicity condition, we let the displacements of the leading order be of the
form
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u01 ¼ ~uu01ðx1; s0; s1; s2; . . .Þ cos nx2; ð46Þ

u02 ¼ ~uu02ðx1; s0; s1; s2; . . .Þ sin nx2; ð47Þ

u03 ¼ ~uu03ðx1; s0; s1; s2; . . .Þ cos nx2; ð48Þ
where n denotes the circumferential wave number.

Substituting (46)–(48) into (33)–(35) yields the leading-order equations:

m11 m12 m13

m21 m22 m23

m31 m32 m33

24 35
o2~uu0

1

os2
0

o2~uu0
2

os2
0

o2~uu0
3

os2
0

8>>>><>>>>:

9>>>>=>>>>;þ
k11 k12 k13
k21 k22 k23
k31 k32 ðk33 þ kN eTT Þ

24 35 ~uu01
~uu02
~uu03

8><>:
9>=>; ¼ 0; ð49Þ

where

k11 ¼ �bAA11o11 þ n2�AA66=r2 � eAA11sao1=r þ �AA22s2a=r
2;

k12 ¼ �nðeAA12 þ eAA66Þo1=r þ nð�AA22 þ �AA66Þsa=r2;

k13 ¼ bBB11o111 � n2 eBB12

�
þ B66 þ eBB66

�
o1=r2 þ eBB11sao11=r þ n2 eBB12

�
þ B22 þ eBB66 þ B66

�
sa=r3

� eAA12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r

�
þ B22s2a=r

2
�
o1 þ �AA22casa

ffiffiffiffiffiffiffiffi
R=h

p
=r2;

k21 ¼ n eAA12

�
þ eAA66

�
o1=r þ n �AA22

�
þ �AA66

�
sa=r2;

k22 ¼ �bAA66o11 þ n2�AA22=r2 � eAA66sao1=r þ �AA66s2a=r
2;

k23 ¼ �nðeBB12 þ bBB66 þ eBB66Þo11=r þ n3B22=r3 � nðB22 þ B66 þ eBB66 � 2bBB66Þsao1=r2

þ n �AA22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r2

h
þ ðeBB66 þ B66 � 2bBB66Þs2a=r3

i
;

k31 ¼ �bBB11o111 þ n2 eBB12

�
þ B66 þ eBB66

�
o1=r2 � eBB11

�
þ bBB11

�
sao11=r þ n2B22sa=r3

þ eAA12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r

�
þ B22s2a=r

2
�
o1 þ �AA22saca

ffiffiffiffiffiffiffiffi
R=h

p
=r2 � B22s3a=r

3 � bBB11;1o11 þ B22;1s2a=r
2 þ n2B66;1=r2;

k32 ¼ �n eBB12

�
þ bBB66 þ eBB66

�
o11=r þ n3B22=r3 þ n B22

�
þ B66 � eBB66

�
sao1=r2 þ n �AA22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r2

�
� B22s2a=r

3
�

þ n B22;1

�
þ B66;1

�
sa=r2;

k33 ¼ bDD11o1111 � n2 2eDD12

�
þ D66 þ 2eDD66 þ bDD66

�
o11=r2 þ n4D22=r4 þ eDD11

�
þ bDD11

�
sao111=r

þ n2 2bDD66

�
þ eDD66 þ D66 þ 2eDD12

�
sao1=r3 � 2eBB12ca

ffiffiffiffiffiffiffiffi
R=h

p
=r

�
þ D22s2a=r

2
�
o11 þ n2 2B22ca

ffiffiffiffiffiffiffiffi
R=h

p
=r3

h
� 2eDD12

�
þ 2D22 þ eDD66 þ D66 þ 2bDD66

�
s2a=r

4
i
þ D22s3ao1=r

3 þ �AA22 ca

ffiffiffiffiffiffiffiffi
R=h

p
=r

� �2
� B22s2aca

ffiffiffiffiffiffiffiffi
R=h

p
=r3

þ bDD11;1o111 � n2D66;1o1=r2 þ n2sa D22

�
þ D66

�
;1 =r3 � s2aD22;1o1=r2 þ saca

ffiffiffiffiffiffiffiffi
R=h

p
B22;1=r2;
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kN ¼ ĉc1o11 þ ecc1sa=rð Þo1 � c2=r
2

� �
n2;

m11 ¼ I10; m13 ¼ �I11o1; m22 ¼ I10; m23 ¼ ðI11=rÞn; m31 ¼ I11 ðsa=rÞ½ þ o1�;

m32 ¼ I11n=r; m33 ¼ I20 � I12 ðsa=rÞo1
�

þ o11 � ðn2=r2Þ
�
; m12 ¼ m21 ¼ 0:

Eq. (49) are a set of differential equations with variable coefficients. Furthermore, the stiffness coefficients
(�AAij; bAAij;Bij; bBBij;Dij and bDDij) depend on the meridional coordinate x1. The DQ method is adopted for
solving the equations.

5.2. The method of differential quadrature

The method of DQ (Bellman and Casti, 1971; Bellman et al., 1972) was proposed for the solutions of
linear and nonlinear partial differential equations. In the DQ rule, a spatial derivative of an unknown
function at a particular sampling point is approximated as a weighted linear sum of the functional values at
all the sampling points in the spatial direction. Using the Lagarange polynomials as the test functions, Shu
and Richards (1992) presented the expressions of weighting coefficients of first and higher derivatives. The
boundary points and the zeros of the Chebyshev functions were suggested to be the sampling points (Bert
and Malik, 1997). A comprehensive literature review related to the application of the DQ method in
computational mechanics was made by Bert and Malik (1996, 1997). Application of the DQ method to
an asymptotic theory for free vibration problems of laminated composite conical shells was made in an
earlier paper (Wu and Wu, 2000). Hence, the corresponding expression of the DQ method is not repeated
here.

According to the DQ rule, the governing equations and the corresponding boundary conditions can be
replaced by a system of simultaneously linear algebraic equations in terms of the mid-surface displacements
at all the sampling points. A treatment commonly used in the literature (Du et al., 1994; Shu, 1996) is
adopted in the present study.

The first two governing equations in (49) are applied at the interior points (i ¼ 2; 3; . . . ;N � 1) and the
third governing equation is applied at the interior points (i ¼ 3; 4; . . . ;N � 2). These resulting equations are
written by

MII MIB½ �

o2D0
I

os2
0

o2D0
B

os2
0

8><>:
9>=>;þ KII þ asDeTTcrKNI

� �
KIB þ asDeTTcrKNB

� �h i D0
I

D0
B

( )
þ adDeTTcr cos eXXs0

�h
� w

�i

� KNI KNB½ �
D0
I

D0
B

( )
¼ 0; ð50Þ

where D0
I consists of the unknowns ~uu01, ~uu

0
2, ~uu

0
3 at the sampling points i ¼ 3; 4; . . . ; ðN � 2Þ and ~uu01, ~uu

0
2 at the

sampling points i ¼ 2 and (N � 1); D0
B consists of the unknowns ~uu01, ~uu

0
2, ~uu

0
3 at the boundary points and ~uu03 at

the sampling points i ¼ 2 and (N � 1).
In accordance with the DQ rule, the boundary conditions (44) at edges (x1 ¼ R1=sa

ffiffiffiffiffiffi
Rh

p
and R2=sa

ffiffiffiffiffiffi
Rh

p
)

are rewritten as

KBI KBB½ � D0
I

D0
B

� �
¼ 0: ð51Þ
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Eq. (51) can be rewritten as D0
B ¼ �K�1

BBKBID
0
I . Substituting the resulting equations into (50) yields

A
o2D0

I

os20
þ ðBþ asDeTTcrCÞD0

I þ adDeTTcr cosðeXXs0
h

� wÞ
i
CD0

I ¼ 0; ð52Þ

where A ¼ MII �MIBK
�1
BBKBI, B ¼ KII � KIBK

�1
BBKBI and C ¼ KNI � KNBK

�1
BBKBI.

5.3. Bolotin’s method

Eq. (52) is a system of generalized Mathieu-Hill equations that represents the dynamic instability be-
havior of laminated conical shells subjected to static and periodic thermal loads.

According to Bolotin’s method (Bolotin, 1964), the boundary frequencies of thermal dynamic instability
regions can be determined by letting D0

I as the following form

D0
I ¼

X1
k¼1;2;...

a02k�1 sin
2k � 1ð ÞðeXXs0 � wÞ

2

"
þ b02k�1 cos

2k � 1ð ÞðeXXs0 � wÞ
2

#
; ð53Þ

D0
I ¼ b00 þ

X1
k¼1;2;...

a02k sin kðeXXs0
h

� wÞ þ b02k cos kðeXXs0 � wÞ
i
: ð54Þ

Eqs. (53) and (54) represent the infinite terms of periodic functions of time with period 4p=eXX and 2p=eXX,
respectively. It is well known that the solutions with period 4p=eXX are of great practical importance due to
the fact that the unstable regions obtained using (53) are usually much larger than those regions obtained
using (54). Hence, the former is denoted as the primary instability region and the latter is the secondary
instability region. In view of the rapid convergence of Bolotin’s method, only the first few terms of (53) and
(54) will be adopted in the present study. The convergence of the K-term approximate solutions will be
examined.

5.3.1. The primary instability regions
Substituting (53) in (52), simplifying, and grouping the sine and cosine terms lead to two sets of linear

algebraic equations in a02k�1 and b
0
2k�1ðk ¼ 1; 2; . . . ;KÞ for each K-term solution. The resulting equations are

given by

For the one-term solution (K ¼ 1):

sin
ðeXXs0 � wÞ

2
term: B

"
þ as

�
� 1

2
ad

�
DeTTcrC�

eXX2

4
A

#
a01 ¼ 0; ð55aÞ

cos
ðeXXs0 � wÞ

2
term: B

"
þ as

�
þ 1

2
ad

�
DeTTcrC�

eXX2

4
A

#
b01 ¼ 0: ð55bÞ

For the two-term solution (K ¼ 2):

sin
ðeXXs0 � wÞ

2
and sin

3ðeXXs0 � wÞ
2

terms:
Bþ as � 1

2
ad

� �
DeTTcrC� eXX2

4
A adDeTTcr

2
C

adDeTTcr
2

C Bþ asDeTTcrC� 9eXX2

4
A

24 35
�

a01

a03

( )
¼ 0; ð56aÞ
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cos
ðeXXs0 � wÞ

2
and cos

3ðeXXs0 � wÞ
2

terms:
Bþ as þ 1

2
ad

� �
DeTTcrC� eXX2

4
A adDeTTcr

2
C

adDeTTcr
2

C Bþ asDeTTcrC� 9eXX2

4
A

24 35
� b01

b03

( )
¼ 0: ð56bÞ

For the K-term solution:

sin

eXXs0 � w
� �

2
; sin

3 eXXs0 � w
� �

2
; . . . and sin

ð2k � 1Þ eXXs0 � w
� �
2

terms:

Bþ as � 1
2
ad

� �
DeTTcrC� eXX2

4
A adDeTTcr

2
C 0 � � � 0

adDeTTcr
2

C Bþ asDeTTcrC� 9eXX2

4
A adDeTTcr

2
C . .

. ..
.

0 adDeTTcr
2

C Bþ asDeTTcrC� 25eXX2

4
A . .

.
0

..

. . .
. . .

. . .
. adDeTTcr

2
C

0 � � � 0 adDeTTcr
2

C Bþ asDeTTcrC� ð2k�1Þ2eXX2

4
A

26666666666664

37777777777775

�

a01

a03

a05

..

.

a02k�1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ 0; ð57aÞ

cos

eXXs0 � w
� �

2
; cos

3 eXXs0 � w
� �

2
; . . . and cos

ð2k � 1Þ eXXs0 � w
� �
2

terms:

Bþ as þ 1
2
ad

� �
DeTTcrC� eXX2

4
A adDeTTcr

2
C 0 � � � 0

adDeTTcr
2

C Bþ asDeTTcrC� 9eXX2

4
A adDeTTcr

2
C . .

. ..
.

0 adDeTTcr
2

C Bþ asDeTTcrC� 25eXX2

4
A . .

.
0

..

. . .
. . .

. . .
.

adDeTTcr
2

C

0 � � � 0 adDeTTcr
2

C Bþ asDeTTcrC� ð2k�1Þ2eXX2

4
A

26666666666664

37777777777775

�

b01

b03

b05

..

.

b02k�1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ 0: ð57bÞ

Observation of (55a)–(57b) reveals that the coefficient matrices related to sine and cosine terms appear in
a recurrent pattern through the K-term solution. For a fixed value of circumferential wave number n, we
can determine one-term approximate solutions for upper and lower bounds of the instability region by
setting the determinants of coefficients of (55a) and (55b) equal to zero, respectively. The solutions can then
be successively modified by using (56a)–(57a) and (56b)–(57b). The first instability region corresponding to
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the smallest eigenvalues is of great practical importance so that it is also denoted as the principal instability
region (Bolotin, 1964) and is the main concerns in the literature.

5.3.2. The secondary instability regions
Substituting (54) in (52), simplifying, and grouping the sine and cosine terms lead to two sets of linear

algebraic equations in a02k (k ¼ 1; 2; . . . ;K) and b02k (k ¼ 0; 1; 2; . . . ;K) for each K-term solution. The re-
sulting equations are given by

For the one-term solution (K ¼ 1):

sin eXXs0
�

� w
�
term: B

h
þ asDeTTcrC� eXX2A

i
a02 ¼ 0; ð58aÞ

1 and cos eXXs0
�

� w
�
terms:

Bþ asDeTTcrC
adDeTTcr

2
C

adDeTTcrC Bþ asDeTTcrC� eXX2A

24 35 b00

b02

( )
¼ 0: ð58bÞ

For the two-term solution (K ¼ 2):

sin eXXs0
�

� w
�
and sin 2 eXXs0

�
� w

�
terms:

Bþ asDeTTcrC� eXX2A adDeTTcr
2

C

adDeTTcr
2

C Bþ asDeTTcrC� 4eXX2A

24 35 a02

a04

( )
¼ 0;

ð59aÞ

1; cos eXXs0
�

� w
�
and cos 2 eXXs0

�
� w

�
terms:

Bþ asDeTTcrC
adDeTTcr

2
C 0

adDeTTcrC Bþ asDeTTcrC� eXX2A adDeTTcr
2

C

0 adDeTTcr
2

C Bþ asDeTTcrC� 4eXX2A

266664
377775

b00

b02

b04

8><>:
9>=>; ¼ 0: ð59bÞ

For the K-term solution:

sin eXXs0
�

� w
�
; sin 2 eXXs0

�
� w

�
; . . . and sin 2k eXXs0

�
� w

�
terms:

Bþ asDeTTcrC� eXX2A adDeTTcr
2

C 0 � � � 0

adDeTTcr
2

C Bþ asDeTTcrC� 4eXX2A adDeTTcr
2

C . .
. ..

.

0 adDeTTcr
2

C Bþ asDeTTcrC� 9eXX2A . .
.

0

..

. . .
. . .

. . .
. adDeTTcr

2
C

0 � � � 0 adDeTTcr
2

C Bþ asDeTTcrC� k2 eXX2A

26666666666664

37777777777775

�

a02

a04

a06

..

.

a02k

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ 0; ð60aÞ
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1; cos eXXs0
�

� w
�
; cos 2 eXXs0

�
� w

�
; . . . and cos 2k eXXs0

�
� w

�
terms :

Bþ asDeTTcrC
adDeTTcr

2
C 0 � � � 0

adDeTTcrC Bþ asDeTTcrC� eXX2A adDeTTcr
2

C . .
. ..

.

0 adDeTTcr
2

C Bþ asDeTTcrC� 4eXX2A . .
.

0

..

. . .
. . .

. . .
. adDeTTcr

2
C

0 � � � 0 adDeTTcr
2

C Bþ asDeTTcrC� k2 eXX2A

2666666666664

3777777777775

�

b00

b02

b04

..

.

b02k

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ 0: ð60bÞ

Again, observation of (58a)–(60b) reveals that the coefficient matrices related to sine and cosine terms
appear in a recurrent pattern through the K-term solution. By setting the determinants of the coefficients of
(58a) and (58b) equal to zero, respectively, we can determine one-term approximate solutions for upper and
lower bounds of the secondary instability region for a fixed value of n. The solutions can then be succes-
sively modified by using (59a)–(60a) and (59b)–(60b).

5.4. The orthonormality and solvability conditions

Since a set of unique solution is required in the present analysis, the modal unknowns are normalized by
imposing the orthonormality conditions:

D0
I

�
þ e2D1

I þ e4D2
I þ � � �

�T � D0
I

�
þ e2D1

I þ e4D2
I þ � � �

�
¼ 1: ð61Þ

According to (61), the orthonormality conditions for various orders are specified as

e0-order: ðD0
I Þ

T � D0
I ¼ 1; ð62Þ

e2-order: ðD0
I Þ

T � D0
I ¼ 1;

ðD0
I Þ

T � D1
I ¼ 0;

ð63Þ

e4-order: ðD0
I Þ

T � D0
I ¼ 1;

ðD0
I Þ

T � D1
I ¼ 0;

2ðD0
I Þ

T � D2
I þ ðD1

I Þ
T � D1

I ¼ 0; . . . etc:

ð64Þ

Carrying on the solution to order e2, we let the displacements of e2 order be as follows.

u11 x1; x2; s0; s1; . . .ð Þ ¼ ~uu11ðx1; s0; s1; . . .Þ cos nx2; ð65Þ

u12 x1; x2; s0; s1; . . .ð Þ ¼ ~uu12ðx1; s0; s1; . . .Þ sin nx2; ð66Þ
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u13 x1; x2; s0; s1; . . .ð Þ ¼ ~uu13ðx1; s0; s1; . . .Þ cos nx2: ð67Þ

Substituting (65)–(67) in the governing equations of e2-order (k ¼ 1 in (40)–(42)) leads to

m11 m12 m13

m21 m22 m23

m31 m32 m33

24 35
o2~uu1

1

os2
0

o2~uu1
2

os2
0

o2~uu1
3

os2
0

8>>>><>>>>:

9>>>>=>>>>;þ
k11 k12 k13
k21 k22 k23
k31 k32 k33 þ kN eTT� �

264
375 ~uu11

~uu12
~uu13

8><>:
9>=>; ¼

f̂f11ðx3 ¼ 1Þ owi
os1

þ ~ff11ðx3 ¼ 1Þ
f̂f21ðx3 ¼ 1Þ owi

os1
þ ~ff21ðx3 ¼ 1Þ

ĥh11ðx3 ¼ 1Þ owi
os1

þ ~hh11ðx3 ¼ 1Þ

8><>:
9>=>;;

ð68Þ

where ĥh31 ¼ f̂f31 þ f̂f11;1 þ nf̂f21=r þ saf̂f11=r and ~hh31 ¼ ~ff31 þ ~ff11;1 þ n ~ff21=r þ sa ~ff11=r.
After applying the DQ rule to (68) and following the similar procedure as was done through (50)–(52),

we obtain

A
o2D1

I

os20
þ B
�

þ asDeTTcrC
�
D1
I þ adDeTTcr cos eXXis0

�h
� wi

�i
CD1

I ¼ f̂f
owi

os1

� �
þ ~ff: ð69Þ

Eq. (69) is solvable if and only if the solvability condition is satisfied (Nayfeh, 1993). The solvability
condition is given by

KT
i � f̂f

owi

os1

� ��
þ ~ff

�
¼ 0; ð70Þ

where Ki denotes the eigenvectors corresponding to the eigenvalues eXX i.
The dependence of wi upon s1 can then be determined as

wi ¼ �kis1 þ ~wwi s2; s3; . . .ð Þ; ð71Þ

where ki ¼ ðKT
i � ~ffÞ=ðK

T
i � f̂fÞ; ewwi are functions of the scales s2, s3, . . . , that can be determined at the next-

order level.
With (71) and the relation s1 ¼ e2s0 ¼ ðh=RÞs0, the time functions of all field variables are now expressed

in terms of sinðð2k � 1Þ½ðeXX þ kh=RÞs0 � ~ww�=2Þ, cosðð2k � 1Þ½ðeXX þ kh=RÞs0 � ~ww�=2Þ, sin k½ðeXX þ kh=RÞs0 � ~ww�
and cos k½ðeXX þ kh=RÞs0 � ~ww� . Hence, the upper and lower bounds of the dynamic instability regions at the
e2-order level have been modified aseXXi þ kiðh=RÞ: ð72Þ

Substituting (71) in (69) yields

A
o2D1

I

os20
þ B
�

þ asDeTTcrC
�
D1
I þ adDeTTcr cos eXXis0

�h
� wi

�i
CD1

I ¼ �ki f̂f þ ~ff: ð73Þ

By solving (73) with the orthonormality conditions (63), we can uniquely determine the values of D1
I

which denote the first-order modifications to the modal unknowns D0
I .

In view of the recurrence relationship between the leading-order and the higher-order problems, the
solution procedure can be continued to higher-order levels in a similar way.

6. Illustrative example

The thermally induced dynamic instability problems of simply supported, cross-ply laminated coni-
cal shells under static and periodic thermal loads are considered in Table 1 and Figs. 2 and 3. In the
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computations the material properties are given by EL=ET ¼ 25, GLT=ET ¼ 0:5, GTT=ET ¼ 0:2, mLT ¼
mTT ¼ 0:25, aT ¼ 3aL, ET ¼ 6:89� 106 kN/m2 (or 106 psi), aL ¼ 6:3� 10�6 l/�C, and q=q0 ¼ 1. The fre-
quency parameter X is normalized as X ¼ XR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh=A11

p
.

Before we proceed to the thermal dynamic instability analysis, a counterpart problem has to be analyzed
in advance where the identical shell is subjected to a static temperature field

ðTo þ TiÞ
2

þ ðTo � TiÞ
2h

f and Ti ¼ 3To ð74Þ

in which To and Ti denote the temperature change at the outer and inner surfaces of the shell, respec-
tively. Through nondimensionalization and normalization, we have ~//ðx3Þ ¼

ffiffiffiffiffiffiffiffiffiffi
3=26

p
ð2� x3Þ and DTcr ¼ffiffiffiffiffiffiffiffiffiffi

26=3
p

ðToÞcr at the critical state. According to the results of a static thermoelastic buckling analysis (Wu
and Chiu, 2001), the temperature fields at the critical state are [166.7 �C ~//ðx3Þ] (i.e., DTcr ¼ 166:7 �C) for [0/
90] and [265.8 �C ~//ðx3Þ] (i.e., DTcr ¼ 265:8 �C) for [0/90/0/90] laminated shells. The circumferential wave
numbers for the corresponding buckling modes in both cases are computed to be three (i.e., n ¼ 3).

In the present analysis, as and ad portions of the temperature field at the critical state in the thermoelastic
buckling analysis are taken as the magnitudes of static and periodic thermal loads, respectively, where
as þ ad 6 1. Hence, the temperature field is given as

Table 1

The first primary and secondary instability regions for the cross-ply conical shells

Laminates Instability

regions

Trigonomet-

ric functions

K-term ap-

proximations

Present asymptotic solutions

e0 e2 e4

[0/90] Primary Sin 1 0.3663 0.3555 0.3556

2 0.3682 0.3626 0.3626

3 0.3682 0.3635 0.3633

Cos 1 0.2391 0.2287 0.2290

2 0.2467 0.2399 0.2398

3 0.2467 0.2410 0.2406

Secondary Sin 1 0.1548 0.1496 0.1497

2 0.1592 0.1548 0.1548

3 0.1594 0.1552 0.1551

Cos 1 0.1269 0.1219 0.1220

2 0.1333 0.1284 0.1284

3 0.1336 0.1290 0.1287

[0/90/0/90] Primary Sin 1 0.4431 0.4244 0.4246

2 0.4457 0.4395 0.4395

3 0.4457 0.4402 0.4400

Cos 1 0.2656 0.2447 0.2450

2 0.2789 0.2682 0.2678

3 0.2790 0.2693 0.2681

Secondary Sin 1 0.1827 0.1732 0.1734

2 0.1890 0.1837 0.1837

3 0.1891 0.1840 0.1837

Cos 1 0.1360 0.1258 0.1261

2 0.1506 0.1429 0.1427

3 0.1510 0.1433 0.1426

2h=R1 ¼ 0:1, L=R1 ¼ 5, N ¼ 21, n ¼ 3, a ¼ 45�, as ¼ 0:2, ad ¼ 0:8; X ¼ XR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh=A11

p
.
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DT ¼ asDTcr
ffiffiffiffiffiffiffiffiffiffi
3=26

p
2ð

j
� x3Þ

k
þ adDTcr

ffiffiffiffiffiffiffiffiffiffi
3=26

p
2ð

j
� x3Þ

k
cosXt: ð75Þ

The boundary frequencies of first primary and secondary instability regions for [0/90] and [0/90/0/90]
laminated conical shells are given in Table 1. The geometry parameters are a ¼ 45�, L=R1 ¼ 5, 2h=R1 ¼ 0:1.
The static and dynamic parameters of the temperature field are taken as as ¼ 0:2 and ad ¼ 0:8, respectively.
The convergence of the present asymptotic theory and Bolotin’s method is examined. It is shown that the
convergent solution is obtained at the e4-order level with the three-term approximations. It is well known

Fig. 2. The principal instability regions of [0/90/0] laminated conical shells.

Fig. 3. The principal instability regions of [0/90/0/90] laminated conical shells.

C.-P. Wu, S.-J. Chiu / International Journal of Solids and Structures 39 (2002) 3001–3021 3019



that for ½0=90�m antisymmetric laminates of constant thickness, the extension-bending coupling stiffnesses
will decrease as the number of layers (i.e., 2m) increase. The effect of extension-bending coupling stiffnesses
on the boundary frequencies of instability regions can then be evaluated by observing the results of [0/90]
and [0/90/0/90] laminated shells. It is noted that the boundary frequencies of the instability regions decrease
as the extension-bending coupling stiffnesses increase.

A parametric study for thermal dynamic instability of [0/90/0] and [0/90/0/90] laminated shells is shown
in Figs. 2 and 3, respectively. The variations with semivertex angle a, thickness-to-radius ratio 2h=R1 and
dynamic parameter ad on the principal instability regions are shown. The geometry parameters are a ¼ 30�,
60�; L=R1 ¼ 5; 2h=R1 ¼ 0:01, 0.1. The static and dynamic parameters of the thermal field are taken as
as ¼ 0:2 and ad ¼ 0:2–0:8. It is noted that the boundary frequencies of the dynamic instability regions
increase as the thickness-to-radius ratio increase. The effect of transverse deformation on the boundary
frequencies is much notable than the change of the semivertex angle. The range of the dynamic instability
regions increase as the dynamic parameter of the temperature field increase.

7. Conclusions

In conjunction with the method of DQ and Bolotin’s method, the asymptotic solution for thermally
induced dynamic instability of laminated composite conical shells under static and periodic thermal loads is
presented. The temperature field is considered a periodic function in time and a certain distributed function
in the thickness direction. The convergent solution of the present asymptotic theory is obtained at the e4-
order level with the three-term approximations. Furthermore, the present asymptotic formulation is ap-
plicable to the free vibration analysis of the laminated conical shells in the absence of thermal loads.
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